Stereotactic Body Radiation Therapy (SBRT) for Hepatocellular Carcinoma

Laura A. Dawson, M.D.
Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario

Disclosures

- Research funding from Bayer and Elekta, paid to institution.

Hypotheses

- Stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy (SABR), should improve outcomes in patients with HCC who are unsuitable for standard local therapies.
 - Quality of life
 - Local control
 - Survival

Stereotactic Body Radiotherapy, SBRT

- Very conformal dose distribution
- Highly potent doses
- High dose per fraction
- Motion management
- Image guidance (“stereotactic”)
- Few number of fractions (3 - 6)

HCC: 5 Fraction SBRT Plan

Avoidance of normal tissues a priority
Dose dependent on normal tissues
- Volume of spared liver
- Proximity to luminal GI organs

35 Gy, 5#

Image Guided Radiotherapy (IGRT)

And more: combined technologies, MR-linac, ... Dawson, Jaffray, JCO, 2007
Biologic Rationale for SBRT

- High dose / fraction specific effects
 - Threshold ~ 8Gy/fraction
- Postulated mechanisms of RT injury
 - Ablative direct cell kill
 - Endothelial target
 - Rapid injury enhances RT response (Fuks)
 - Injury over days lead to secondary tumor cell death
 - Immune
 - RT increases tumor antigen-specific immune response
 - Abscopal effect
 - Local therapy causes systemic response

Postulated mechanisms of RT injury

- Ablative direct cell kill
- Endothelial target
 - Rapid injury enhances RT response (Fuks)
 - Injury over days lead to secondary tumor cell death (Fuks)
- Immune
 - RT increases tumor antigen-specific immune response
- Abscopal effect
 - Local therapy causes systemic response

HCC BCLC: No RT

HCC BCLC: Where RT fits

Selected Early HCC SBRT Series

<table>
<thead>
<tr>
<th>No. pts</th>
<th>Dose/Fraction</th>
<th>Tumor size</th>
<th>Med FU (mo)</th>
<th>Response Rate</th>
<th>Local control</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blomgren, 98</td>
<td>9</td>
<td>5-15 Gy/1-3#</td>
<td>NR</td>
<td>NR</td>
<td>70%</td>
<td>NR</td>
</tr>
<tr>
<td>Choi, 06</td>
<td>20</td>
<td>50 Gy / 5-10#</td>
<td>3.8 cm (3-4.0cm)</td>
<td>23</td>
<td>80%</td>
<td>1 yr: 70%</td>
</tr>
<tr>
<td>Mandel, 06</td>
<td>11</td>
<td>CP A + B</td>
<td>25 Gy / 5</td>
<td>30-37.5 Gy / 3#</td>
<td>NR</td>
<td>LC 1 yr: 82%</td>
</tr>
<tr>
<td>Tae, 08</td>
<td>31</td>
<td>56 Gy / 6# (8-54 Gy)</td>
<td>173 cc (15 - 177cc)</td>
<td>18</td>
<td>LC 1 yr: 63%</td>
<td>1 yr: 48%</td>
</tr>
<tr>
<td>Louis, 10</td>
<td>25</td>
<td>CP A + B</td>
<td>45 Gy / 3#</td>
<td>150 cc</td>
<td>13</td>
<td>88%</td>
</tr>
<tr>
<td>Kwon, 10</td>
<td>42</td>
<td>CP A 90%</td>
<td>30 – 33 Gy / 2-3#</td>
<td>15 - 32 cc</td>
<td>29</td>
<td>86%</td>
</tr>
<tr>
<td>Facciuto, 11</td>
<td>37</td>
<td>24-36/ 2-4#</td>
<td>2.0 cm +/- 0.8 cm</td>
<td>22</td>
<td>33%</td>
<td>3 yr: 63%</td>
</tr>
<tr>
<td>Andolino, 11</td>
<td>65</td>
<td>CP A/B: 3-6#</td>
<td>44 Gy / 3Gy CP A</td>
<td>3 cm</td>
<td>27</td>
<td>90%</td>
</tr>
<tr>
<td>Seo, '10</td>
<td>38</td>
<td>33-57Gy / 3</td>
<td><10cm</td>
<td>79%</td>
<td>2 yr: 61%</td>
<td></td>
</tr>
</tbody>
</table>

Selected Early HCC SBRT Series

<table>
<thead>
<tr>
<th>No. pts</th>
<th>Dose/Fraction</th>
<th>Tumor size</th>
<th>Med FU (mo)</th>
<th>Response Rate</th>
<th>Local control</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blomgren, 98</td>
<td>9</td>
<td>5-15 Gy/1-3#</td>
<td>NR</td>
<td>NR</td>
<td>70%</td>
<td>NR</td>
</tr>
<tr>
<td>Choi, 06</td>
<td>20</td>
<td>50 Gy / 5-10#</td>
<td>3.8 cm (3-4.0cm)</td>
<td>23</td>
<td>80%</td>
<td>1 yr: 70%</td>
</tr>
<tr>
<td>Mandel, 06</td>
<td>11</td>
<td>CP A + B</td>
<td>25 Gy / 5</td>
<td>30-37.5 Gy / 3#</td>
<td>NR</td>
<td>LC 1 yr: 82%</td>
</tr>
<tr>
<td>Tae, 08</td>
<td>31</td>
<td>56 Gy / 6# (8-54 Gy)</td>
<td>173 cc (15 - 177cc)</td>
<td>18</td>
<td>LC 1 yr: 63%</td>
<td>1 yr: 48%</td>
</tr>
<tr>
<td>Louis, 10</td>
<td>25</td>
<td>CP A + B</td>
<td>45 Gy / 3#</td>
<td>150 cc</td>
<td>13</td>
<td>88%</td>
</tr>
<tr>
<td>Kwon, 10</td>
<td>42</td>
<td>CP A 90%</td>
<td>30 – 33 Gy / 2-3#</td>
<td>15 - 32 cc</td>
<td>29</td>
<td>86%</td>
</tr>
<tr>
<td>Facciuto, 11</td>
<td>37</td>
<td>24-36/ 2-4#</td>
<td>2.0 cm +/- 0.8 cm</td>
<td>22</td>
<td>33%</td>
<td>3 yr: 63%</td>
</tr>
<tr>
<td>Andolino, 11</td>
<td>65</td>
<td>CP A/B: 3-6#</td>
<td>44 Gy / 3Gy CP A</td>
<td>3 cm</td>
<td>27</td>
<td>90%</td>
</tr>
<tr>
<td>Seo, '10</td>
<td>38</td>
<td>33-57Gy / 3</td>
<td><10cm</td>
<td>79%</td>
<td>2 yr: 61%</td>
<td></td>
</tr>
</tbody>
</table>
Korean Registry-HCC SBRT

- N=93 HCC patients (26% CP B)
 - All refractory or unsuitable for TACE
 - Dose: 30 - 40 Gy in 3-4 fractions
 - Size: median 2 cm (1-6 cm)
 - Improved local control for smaller tumors (100% < 2cm, 93% 2-3cm, 76% 3-6)
 - Toxicity: Decline in CP score ~9.7% (gr 5, n=1 CP B pt)

3 yr local control 92% 3 yr survival 54%

Yoon, PLOS 2013

Japanese Retrospective Series-HCC SBRT

- N=221 (~84% T1) HCC patients (CP A:B=178:27)
 - 56-61% received TACE < 3 months prior to SBRT
 - Dose: 40 Gy in 5 fractions
 - 35 Gy: for CP B, and so < 20% liver ≥20Gy, n=48
 - Size: median 2.7 cm (35 Gy), 2.4 cm (40 Gy), max 5.0 cm
 - No sign. differences in outcomes for 35 vs 40 Gy
 - Toxicity: Decline in CP score ~10% (gr 5, n=2 CP B pts)

3 yr local control 91% 3 yr survival 70%

Sanuki, Acta Oncol 2013

HCC Bridge to Transplant RT Series

<table>
<thead>
<tr>
<th>Author</th>
<th>Pts</th>
<th>RT Dose</th>
<th>%OLT</th>
<th>TACE?</th>
<th>Time to OLT</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Connor, 2012</td>
<td>10</td>
<td>33-54/3</td>
<td>100%</td>
<td>40%</td>
<td>4 mo</td>
<td>5yr OS 100%</td>
</tr>
<tr>
<td>Katz, 2012</td>
<td>18</td>
<td>50-55/10</td>
<td>61%</td>
<td>11.1%</td>
<td>6.3 mo</td>
<td>2yr OS 100%</td>
</tr>
<tr>
<td>Bush, 2011</td>
<td>76</td>
<td>33/15</td>
<td>24%</td>
<td>0</td>
<td>13 mo</td>
<td>3yr OS 70%</td>
</tr>
<tr>
<td>Andolina, 2011</td>
<td>60</td>
<td>CPA-30-48/3</td>
<td>38%</td>
<td>NA</td>
<td>7 mo</td>
<td>2yr PFS 69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPB-24-48/5</td>
<td></td>
<td></td>
<td></td>
<td>5yr OS 96%</td>
</tr>
<tr>
<td>Sandroussi, 2009</td>
<td>10</td>
<td>33-54/1-6</td>
<td>80%</td>
<td>30%</td>
<td>5 mo</td>
<td>2yr RFS 70%</td>
</tr>
<tr>
<td>Al-Hamad, 2009</td>
<td>1</td>
<td>50/5</td>
<td>100%</td>
<td>0</td>
<td>NA</td>
<td>1yr OS 100%</td>
</tr>
</tbody>
</table>

* No local progression or morbidity at time of transplant
Explant: 50-100% necrosis

Klein, Dawson, UROBP, 2013

HCC BCLC: Where RT fits

Dawson, SRO, 2011
RT & TACE vs TACE - HCC: Korea

- 73/105 HCC incomplete response to TACE
 - 35 TACE repeated
 - 38 received radiotherapy
- Multivariate analysis sign. factors (survival)
 - Tumour size
 - Treatment

<table>
<thead>
<tr>
<th>2 yr survival</th>
<th>RT</th>
<th>no RT</th>
<th>All *</th>
<th>5-7 cm</th>
<th>63%</th>
<th>42%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All *</td>
<td>37%</td>
<td>14%</td>
<td>37%</td>
<td>63%</td>
<td>42%</td>
<td></td>
</tr>
</tbody>
</table>

(Shim et al., 2005)

Can RT control HCC with portal vein thrombosis (PVT)?

- HCC portal vein thrombosis (PVT) invasion is a strong prognostic factor
- RT for HCC with PVT: High variability in series
 - Some studies combine RT with TACE
 - Prognostic factors: Child score, HCC burden, main PVTT, complete occlusion, extrahepatic disease
- Recanalization of portal vein thrombosis occurs in ~50% of patients post RT
- Median time to maximal response ~6 months
- Median survival 4–13 months

Clinical Case: Resolution of PVTT w RT

Jan 2009
AFP 10,000

Sept 2009
AFP 24

RT for HCC with Portal Vein Thrombus

<table>
<thead>
<tr>
<th>Author, y</th>
<th>Patients</th>
<th>Design</th>
<th>CP (%)</th>
<th>CP (%)</th>
<th>RT only (Gy)</th>
<th>RT + TACE (Gy)</th>
<th>Fractionation</th>
<th>Median survival (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim, 2012</td>
<td>45</td>
<td>Rot</td>
<td>38</td>
<td>0</td>
<td>7%</td>
<td>30</td>
<td>3 Gy ×6</td>
<td>11.2</td>
</tr>
<tr>
<td>Tsai, 2012</td>
<td>412</td>
<td>Ret</td>
<td>26</td>
<td>0</td>
<td>29%</td>
<td>30</td>
<td>1.5 Gy ×9</td>
<td>10.6</td>
</tr>
<tr>
<td>Charns, 2011</td>
<td>20</td>
<td>Ret</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>30-48</td>
<td>3.4 Gy ×9</td>
<td>12</td>
</tr>
<tr>
<td>Katunem, 2009</td>
<td>16</td>
<td>Ret</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>30-45</td>
<td>3 Gy ×9</td>
<td>7.5</td>
</tr>
<tr>
<td>Zhang, 2009</td>
<td>16</td>
<td>Ret</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>30-60</td>
<td>2 Gy ×9</td>
<td>7</td>
</tr>
<tr>
<td>Huang, 2009</td>
<td>326</td>
<td>Ret NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>2-3 Gy ×9</td>
<td>4</td>
</tr>
<tr>
<td>Han, 2008</td>
<td>40</td>
<td>Prot</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45</td>
<td>25 Gy ×10</td>
<td>13.1</td>
</tr>
<tr>
<td>Yip, 2007</td>
<td>38</td>
<td>Rot</td>
<td>24</td>
<td>0</td>
<td>0%</td>
<td>17.5-50.4</td>
<td>3 Gy ×7</td>
<td>9.6</td>
</tr>
<tr>
<td>Liu, 2006</td>
<td>22 SRT</td>
<td>Prot</td>
<td>30</td>
<td>18</td>
<td>0%</td>
<td>45</td>
<td>3 Gy ×3</td>
<td>6</td>
</tr>
<tr>
<td>21 CRT</td>
<td>33</td>
<td>CRT</td>
<td>45</td>
<td>0</td>
<td>45</td>
<td>1.8 Gy ×9</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Kim, 2005</td>
<td>59</td>
<td>Rot</td>
<td>12</td>
<td>0</td>
<td>100%</td>
<td>30-54</td>
<td>2.5 Gy ×6</td>
<td>7.8</td>
</tr>
<tr>
<td>Zeng, 2005</td>
<td>44</td>
<td>Rot NA</td>
<td>23</td>
<td>0</td>
<td>33-60</td>
<td>2 Gy ×9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nomura, 2003</td>
<td>19</td>
<td>Prot</td>
<td>32</td>
<td>5</td>
<td>0</td>
<td>60</td>
<td>2 Gy ×9</td>
<td>7</td>
</tr>
<tr>
<td>Ishikawa, 2002</td>
<td>12</td>
<td>Prot</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>25 Gy ×2</td>
<td>5.3</td>
</tr>
<tr>
<td>Tazawa, 2001</td>
<td>24</td>
<td>Rot</td>
<td>33-17</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>25 Gy ×3</td>
<td>CP-A: 12.7</td>
</tr>
</tbody>
</table>

Klein, Dawson, IJROBP, 2013

RT - HCC + portal vein thrombosis - Korea

- Phase II study of 40 patients
 - RT 45 Gy in 25#, conformal RT
 - Concurrent hepatic arterial 5FU wk 1 and 5
 - Post RT hepatic arterial 5FU + Cisplatin
 - Median survival 13.1 months

Han, Seong, et al, Cancer 103, Sept 2008
Toronto Phase I/II HCC Study
- N=102 HCC patients unsuitable for resection, transplant, TACE or RFA
- Hep B : Hep C : alcohol 39% : 39% : 25%
- Prior therapies 50%
- Portal vein thrombosis 55%
- Extrahepatic disease 12%
- Size: median 9.9 cm (2 – 43 cm)
- Median dose 36 Gy in 6# (24 – 54 Gy, 6 #)

Local control
- 1 year local control 87% (95% 78-93%)
- Dose response observed

Tumor marker response (AFP)

Overall survival, n=102
Median survival 17 months
Survival by thrombosis
Survival by trial
- Median survival
 - No thrombosis 20.5 mo (95% CI 12.9, 36.9)
 - Thrombosis 11.0 mo (95% CI 11.3, NA)
- Trial 1
 - Median 11.1 months (95% CI 7.4-19.0)
- Trial 2
 - Median 25.5 months (95% CI 11.3, NA)

The bad news....
- 7 of 102 patients had death possibly related to therapy 1.1 – 7.7 months post SBRT
 - No RECIST parenchymal PD, but 2 PVT PD
 - 5 liver
 - 1 biliary (with gross HCC invasion to bile duct)
 - 1 duodenum bleed (post re-RT to LN)
- ~30% of patients had a decline by 2 or more in Child Pugh score at 3 months

Changes in Child Score
Hepatocellular Cancer: RTOG1112

- Planned randomized phase III trial, n = 368
- Primary endpoint: overall survival (median survival 10.5 to 14.5 months)

RTOG1112 Key Eligibility

Inclusion Criteria
- Measureable HCC
- Unsuitable for or refractory to:
 - Surgery
 - TACE
 - Child Pugh A
 - BCLC B or C
 - Platelets > 70 000 bil/L
 - INR < 1.7
 - Albumin ≥ 28 g/L
 - AST, ALT < 6xULN

Exclusion Criteria
- Prior Sorafenib
- Prior abdominal RT or Y-90
- > 15 cm single HCC
- > 20 cm sum of max diameters
- > 5 discreet HCC
- Extrahepatic disease > 2 cm
- HCC extension to stomach
- HCC extension to CBD
- Thrombolytic therapy within 28 days of study entry
- Bleeding within 60 days requiring transfusion

Conclusions

- SBRT can treat HCC safely
 - Advanced RT techniques, individualized RT and HCC multi-disciplinary team needed
 - Toxicity lowest if CP A, < 10 cm, no PVT HCC
- SBRT should be considered for T1/2 HCC unsuitable for resection or RFA and as a bridge to transplant
 - Best outcomes if < 6 cm and < 3 lesions
- Randomized trials needed
 - RTOG1112 accruing – please support
 - Opportunity for education, peer review and quality improvement for RT centers

Acknowledgements

Alexis Bujold
Anand Swaminath
Charles Cho
Mark Lee
Regina Tse
Maria Hawkins
John Kim
Rob Dinniwell
Jim Brierley
Rebecca Wong
Jolie Ringash
Anthony Brade
Rob Case
Cynthia Eccles
Gerry Ruby Foundation
Elekta, Bayer, RMP
www.igrt.ca

Kristy Brook
Mike Velec
Jean Pierre Bissonnette
David Jaffray
Doug Moseley
Catherine Costens
Mike Sharpe
Teo Stanescu
Tim Craig
Tom Purdie
PMH-RMP planners, therapists
Kwalapirin Singh
Gina Lockwood, Christine Massey
PMH HCC tumor board
All referring MDs
ASCO CDA, Canadian Cancer Society
CIHR

Can RT be used safely in Child-Pugh B/C pts?

- Toronto review 1/2004- 7/2012, n= 40
 - N=11 bridge to liver transplant pts excluded
 - N=29 treated with definitive SBRT
 - 14 on prospective study (< 10 cm, < CP B9)
 - 69% portal vein tumor thrombosis
 - Median AFP: 4491 (0-94,921)
 - Median HCC volume 133 cc
 - Median survival: 7.9 months (2.8 – 15.1 mo)
 - Prognostic factors on MVA
 - Child Pugh B7 vs other (med OS 8.4 vs. 2.8 mo)
 - AFP < 4491 (correlated with disease burden)

Can RT be used safely in Child-Pugh B/C pts?

- Toxicity lowest and survival best in Child Pugh B7 versus > B7
- Spare as much liver as possible
 - Mean liver (minus GTV)
 - ≤ 6 Gy in 5-10 fractions
 - Maximize the volume spared from RT
 - >800 cc < 10 Gy (in 3-6 fractions)
- Comparative trials needed