Hepatocellular carcinoma: Consensus, controversies and future directions: A report from the Canadian Association for the Study of the Liver Hepatocellular Carcinoma Meeting

Kelly Warren Burak MD FRC-PC MSc(Epid)1, Morris Sherman MB BCh PhD FRC-PC2

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide and its incidence has rapidly increased in North America in recent years. Although there are many published guidelines to assist the clinician, there remain gaps in knowledge and areas of controversy surrounding the diagnosis and management of HCC. In February 2014, the Canadian Association for the Study of the Liver organized a one-day single-topic consensus conference on HCC. Herein, the authors present a summary of the topics covered and the result of voting on consensus statements presented at this meeting.

Key Words: Diagnosis; Hepatocellular carcinoma; Liver cancer; Practice guidelines; Surveillance; Therapy

METHODOLOGY

The present document is a report of the consensus conference on the management of hepatocellular carcinoma (HCC) sponsored by the Canadian Association for Study of the Liver (CASL), which was held in Toronto on February 11, 2014. This is not a practice guideline; however, the views expressed are those of physician experts on various aspects of the management of HCC. Where there is existing consensus, optimal management strategies are recommended, but we also sought to review controversial areas and define future direction in the management of HCC. The topics for the meeting were chosen by the organizing committee (KWB and MS), and nationally and internationally recognized experts in all aspects of HCC were invited to present (Table 1). The meeting was funded by the Canadian Liver Foundation and was endorsed by the World Gastroenterology Organization and the International Association for the Study of the Liver.

Before the meeting, several statements were drafted by the organizers related to each specific topic. The level of evidence for each statement was assigned according to the Oxford System (Table 2). Individual speakers first received the particular statements related to their specific topics for feedback and modification. After editing, the full set of statements was circulated to the entire group of speakers for comments and suggested changes. The finalized statements were circulated to all speakers and other participants ahead of the meeting, along with an environmental scan of the existing HCC consensus recommendations from the Canadian Multidisciplinary HCC Consensus and the major hepatology societies globally including the American Association for the Study of Liver Diseases (AASLD), the European Association for the Study of the Liver (EASL) and the Asian Pacific Association for the Study of the Liver (APASL) (1-4). Speakers delivered 20 min presentations on their topic, which are available at

<www.hepatology.ca/?page_id=542>. There was a question and answer panel discussion following each section of related presentations, after which the participants in the audience voted on their level of agreement with the corresponding statements according to a five-point Likert scale (Table 3). The meeting was attended by 65 individuals, of whom 26 voted on the statements. The profession, years in practice and volume of HCC seen by the respondents were recorded (Figure 1). The majority were hepatologists and practicing physicians, with two being from nursing. The current report presents a summary of the topics presented and the results of the voting. We highlight areas in which there appears to be a lack of consensus regarding the diagnosis and management of HCC.

RESULTS

Epidemiology and surveillance

Incidence of HCC in Canada: The incidence of HCC in Canada in 2013 was 6.8 per 100,000 for men and 2.0 per 100,000 for women according to data collected by Statistics Canada (5). However, the incidence has been rising and has tripled in men and doubled in women since 1970 (6). Furthermore, there are reasons to suspect that the reported rates of HCC in Canada are underestimated. First, Statistics Canada collects data on primary liver cancers as HCC, cholangiocarcinoma, ‘unspecified’ and several other minor categories. The ‘unspecified’ category is approximately two-thirds of the total. In practice, it is rare to actually encounter a primary liver cancer that cannot be classified and, because HCC is, by far, the most common primary liver cancer, most of the ‘unspecified’ group is probably also HCC. Second, the number of cholangiocarcinomas is far too large as a proportion of all primary cancers, and many of these also likely represent HCC. More accurate data regarding the incidence and mortality due to HCC in Canada are needed.
Modelling studies for both hepatitis B virus (HBV) and hepatitis C virus suggest that the incidence of HCC will continue to rise for the next 15 to 20 years (7,8). Furthermore, as the obesity and diabetes epidemics continue to increase we are also likely to encounter more HCC related to nonalcoholic fatty liver disease. The incidence of HCC will, therefore, likely continue to climb for years to come.

Surveillance:

Evidence and populations: The evidence for HCC surveillance is supported by case-control and cohort studies, as well as one randomized controlled trial (RCT) from China involving HBV-infected individuals (9). The strength of evidence around HCC surveillance has been criticized (10); however, further RCTs are not likely to be performed. There is evidence that surveillance for HCC is cost effective, but this is highly dependent on incidence of HCC in the population under surveillance. The groups who should be offered surveillance have been previously identified (1-3). The categories of patients are broadly defined as all cirrhotic and certain noncirrhotic patients with HBV (Asian men >40, Asian women >50 and Africans >20 years of age, positive family history) (1-3). However, surveillance should not be offered to Child-Pugh (C-P) class C cirrhotic patients, unless they are awaiting liver transplantation (LT) (1-3). A large

TABLE 1

<table>
<thead>
<tr>
<th>Session</th>
<th>Topic</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology and surveillance</td>
<td>Hepatocellular carcinoma in Canada</td>
<td>Morris Sherman</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td></td>
<td>Surveillance: Evidence and populations</td>
<td>Jordan Feld</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td></td>
<td>Surveillance: Tests, interval, uptake</td>
<td>Amit Singal</td>
<td>University of Texas (Austin, Texas, USA)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Very early stage hepatocellular carcinoma</td>
<td>Morris Sherman</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td></td>
<td>Computed tomography, magnetic resonance imaging, LI-RADS</td>
<td>Morale Tang</td>
<td>Université de Montréal (Montreal, Quebec)</td>
</tr>
<tr>
<td></td>
<td>Contrast-enhanced ultrasound</td>
<td>Stephanie Wilson</td>
<td>University of Calgary (Calgary, Alberta)</td>
</tr>
<tr>
<td></td>
<td>Gd-EOB-DTPA magnetic resonance imaging</td>
<td>Tae Yong Kim</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td>Staging and prognosis</td>
<td>Barcelona Clinic Liver Cancer system</td>
<td>Jordi Bruix</td>
<td>University of Barcelona (Barcelona, Spain)</td>
</tr>
<tr>
<td></td>
<td>Predicting recurrence</td>
<td>Peter Ghali</td>
<td>McGill University (Montreal, Quebec)</td>
</tr>
<tr>
<td>Current curative and palliative therapies</td>
<td>Surgery</td>
<td>Sean Cleary</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td></td>
<td>Radiofrequency ablation/percutaneous ethanol injection</td>
<td>John Kachura</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td></td>
<td>Transplantation</td>
<td>Norman Kneteman</td>
<td>University of Alberta (Edmonton, Alberta)</td>
</tr>
<tr>
<td></td>
<td>Transarterial chemoembolization</td>
<td>Kelly Burak</td>
<td>University of Calgary (Calgary, Alberta)</td>
</tr>
<tr>
<td></td>
<td>Sorafenib</td>
<td>Andrew Zhu</td>
<td>Harvard University (Boston, Massachusetts, USA)</td>
</tr>
<tr>
<td>Experimental therapy</td>
<td>Barcelona Clinic Cancer system</td>
<td>Aldo Montano-Loza</td>
<td>University of Alberta (Edmonton, Alberta)</td>
</tr>
<tr>
<td></td>
<td>Predicting recurrence</td>
<td>Laura Dawson</td>
<td>University of Toronto (Toronto, Ontario)</td>
</tr>
<tr>
<td></td>
<td>Stereotactic body radiation treatment</td>
<td>Andrew Zhu</td>
<td>Harvard University (Boston, Massachusetts, USA)</td>
</tr>
<tr>
<td></td>
<td>New drugs for hepatocellular carcinoma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Level</th>
<th>Type of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Systematic review of randomized clinical trials</td>
</tr>
<tr>
<td>1B</td>
<td>Individual RCTs with narrow confidence intervals</td>
</tr>
<tr>
<td>1C</td>
<td>All or none studies</td>
</tr>
<tr>
<td>2A</td>
<td>Systematic reviews of cohort studies</td>
</tr>
<tr>
<td>2B</td>
<td>Individual cohort study including low-quality RCTs</td>
</tr>
<tr>
<td>2C</td>
<td>Outcomes research; ecological studies</td>
</tr>
<tr>
<td>3A</td>
<td>Systematic review of case-control studies</td>
</tr>
<tr>
<td>3B</td>
<td>Individual case-control studies</td>
</tr>
<tr>
<td>4</td>
<td>Case-series and poor quality cohort and case-control studies</td>
</tr>
<tr>
<td>5</td>
<td>Expert opinion without explicit critical appraisal or descriptive epidemiology</td>
</tr>
</tbody>
</table>

TABLE 3

<table>
<thead>
<tr>
<th>Likert scale</th>
<th>Accept completely</th>
<th>Accept with some reservation</th>
<th>Accept with major reservation</th>
<th>Reject with some reservation</th>
<th>Reject completely</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Demographics of voters. GI Gastroenterology; HCC Hepatocellular carcinoma; yrs Years
Surveillance for HCC is cost effective in high-risk groups

AFP alone should not be used for surveillance (Level 2B). AFP

Other biomarkers (e.g., AFP-L3 and des-gamma-carboxy prothrombin) may be associated with more advanced stage of HCC (Level 2B); therefore, their role in surveillance requires further study. Mean rating 1.62 (1 = 13, 2 = 10, 3 = 3, 4 = 0, 5 = 0).

Diagnosis

Very early stage HCC: The diagnosis of HCC can be established with radiology or by biopsy. The classical radiographic appearance of HCC is a lesion that exhibits higher signal intensity than the surrounding liver in the arterial phase of a contrast-enhanced study and lower signal intensity than the surrounding liver in the venous or the delayed phase of the contrast examination (so-called portal venous 'washout'). The mechanism underlying this phenomenon is that the HCC is a vascular lesion, fed principally by the hepatic artery, whereas the liver receives 80% of its blood supply from the portal vein. However, some HCCs are hypovascular, particularly if small or early. In these lesions, the arterial supply may not be fully developed, and they may present as hypovascular lesions on dynamic imaging (16).

If the radiological appearances are not typical a biopsy is required. Most often in larger lesions the interpretation of the biopsy is not difficult, but with smaller lesions the distinction between dysplastic nodule and HCC becomes more difficult. In addition to cellular features, a set of stains can reliably separate lesions into HCC or not HCC. These include glypican 3, heat shock protein 70, glutamine synthetase and clathrin heavy chain. The likelihood of HCC approaches 100% when at least two of these markers are positive (17), and these stains should be used in all cases in which the diagnosis is in doubt.

Computed tomography, magnetic resonance imaging, liver imaging reporting and data system: A diagnostic algorithm for HCC has been developed and validated (Figure 2) (2). For any lesion >1 cm found on surveillance US, the diagnosis of HCC can be made if either the contrast-enhanced computed tomography (CT) scan or magnetic resonance imaging (MRI) show typical features as described above. If there is no arterial phase enhancement or no portal venous or delayed phase washout, and if the radiological appearances are not typical of another type of lesion (e.g., hemangioma), a biopsy is required. All major clinical practice guidelines endorse multiphasic CT and MRI with extracellular contrast agents as the first-line modalities for diagnosis and staging of HCC (14).

The American College of Radiology has developed liver imaging reporting and data system (LI-RADS) as a standardized system for interpretation and data collection of CT and MRI liver examinations (18). LI-RADS categorizes observations along a five-point ordinal scale ranging from LR1 (definitely benign) to LR5 (definitely HCC). The application of LI-RADS has yet to be validated; however, standardized reporting should improve communication between radiologists and other clinicians caring for HCC patients.

Contrast-enhanced US: The APASL guidelines state that contrast-enhanced US (CEUS) is as sensitive as dynamic CT or dynamic MRI in the diagnosis of HCC (4); however, the EASL (3) and AASLD (2) guidelines have dropped CEUS from the diagnostic algorithm (Figure 2) because some cholangiocarcinomas on CEUS can have a pattern of arterial phase enhancement and portal venous washout similar to HCC (19). It is important to recognize that CEUS remains a valuable tool in the diagnosis and management of HCC. Unlike dynamic CT or MRI, CEUS allows for real-time scanning throughout the entire arterial phase, with a contrast agent that is purely intravascular and can be safely administered in patients with renal failure. In fact, very rapid washout on CEUS is atypical for HCC and is more likely to represent cholangiocarcinoma or metastatic disease. Furthermore, CEUS can assist in the staging of HCC by determining whether portal vein thrombosis (PVT) is bland or malignant, and may be very helpful in localizing and assessing response of small HCC undergoing percutaneous ablation (20).
Gd-EOB-DTPA MRI: Gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid (Gd-EOB-DTPA) is a liver-specific contrast agent that has been validated in the diagnosis of liver lesions, including HCC (21). It is more sensitive than CT scan for detecting HCC. However, it is more expensive than regular gadolinium contrast, has weaker arterial phase enhancement, and requires a delayed phase (usually performed at 20 min). Nodules without classic features for HCC on dynamic MRI, that remain hypointense on the delayed phase following administration of Gd-EOB-DTPA, may represent HCC. Whether it should used as the sole diagnostic agent in all cases or only used in specific cases of diagnostic difficulty has yet to be clarified.

Statements on diagnosis:

- In cirrhotic patients, a noninvasive diagnosis of HCC can be established for a lesion >1 cm if contrast-enhanced imaging (CT, MRI or CEUS) demonstrates hypervascularity in the arterial phase with washout in the portal venous phase (Level 2B). Mean rating 1.28 (1=18, 2=7, 3=0, 4=0, 5=0).
- The pathological diagnosis of HCC should follow the recommendations of the International Consensus Panel (Level 2B). Immunostaining is recommended to help differentiate high-grade dysplastic nodules from early HCC (Level 2B). Mean rating 1.5 (1=15, 2=6, 3=3, 4=0, 5=0).
- Patients at risk for HCC with a lesion >1 cm detected on US should undergo a contrast-enhanced CT or contrast-enhanced MRI to establish the diagnosis of HCC and stage the disease (Level 2A). Mean rating 1.19 (1=23, 2=1, 3=2, 4=0, 5=0).
- LI-RADS is recommended to standardize the reporting of CT and MRI in patients with cirrhosis or other risk factors for HCC because it enables consistent terminology, reduced interpretation variability, enhanced communication with clinicians and facilitates quality assurance and research. Mean rating 2.12 (1=11, 2=7, 3=3, 4=4, 5=1).
- CEUS demonstrating arterial phase enhancement and late phase washout can be used for the diagnosis HCC (Level 2B). Mean rating 1.54 (1=16, 2=8, 3=1, 4=0, 5=1).
- CEUS is particularly useful for evaluation of venous thrombosis (bland versus malignant), for directing radiofrequency ablation (RFA) of small HCC and for surveillance of recurrence following curative intent therapy (Level 5). Mean rating 1.62 (1=13, 2=10, 3=3, 4=0, 5=0).
- Although Gd-EOB-DTPA-enhanced MRI yields higher diagnostic accuracy compared with four-phase CT, its role in the management of HCC is not yet defined (Level 2B). Mean rating 1.48 (1=17, 2=5, 3=2, 4=1, 5=0).
- Nodules with atypical enhancement on the dynamic phases but with hypo-enhancement on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI may represent HCC. Close surveillance or biopsy of these lesions is recommended (Level 5). Mean rating 1.62 (1=15, 2=8, 3=2, 4=0, 5=1).

Staging and prognosis

Barcelona Clinic Liver Cancer System: There are several ways to assess the severity of disease in patients with HCC. Liver function can be assessed by the C-P score or the Model for End-stage Liver Disease score. The TNM (tumour-node-metastasis) system assesses the anatomical extent of the cancer. Performance scores such as the Karnovsky or the Eastern Cooperative Oncology Group performance status assess the functional limitations of the patient due to the cancer. However, none of these are adequate on their own for HCC, and none give any guidance as to treatment. There are several HCC staging systems that attempt to take some of these factors into account, but the only the Barcelona Clinic Liver Cancer (BCLC) system uses performance status, liver function and tumour burden together to recommend specific therapies. Furthermore, the BCLC staging system has been validated externally for predicting prognosis. The current iteration of the BCLC staging system is shown in Figure 3 (22).
accomplished by laparoscopy with considerable reduction in morbidity, but requires adequate training.

RFA/PEI: RFA can be suitable for patients with small lesions (ideally <3 cm) who have liver function that does not allow resection. RFA can also be used for local control of the HCC as bridging therapy before LT. RFA is clearly superior to PEI for lesions between 2 cm and 5 cm (28). Multifocal HCC is also associated with a higher rate of incomplete response to RFA.

A meta-analysis of RCTs and non-RCTs comparing RFA and resection found that RFA is better tolerated than resection, with similar short-term outcomes (29). Recurrence rates are higher with RFA, and this translates into lower overall survival at five years for RFA compared with surgery (29). However, for smaller lesions (<2 cm), recurrence rates and overall survival are comparable, making RFA an acceptable substitute for surgery in selected patients (29).

LT: LT has traditionally been limited to patients who fell within the ‘Milan criteria’, namely, one HCC lesion <5 cm or fewer than three lesions, none larger than 3 cm in diameter (24). However, there are clearly patients within the Milan criteria who develop recurrence post-transplantation, and there are also many patients with HCC beyond the Milan criteria who can be cured by LT. There have been several proposals to extend these criteria, including the University of California San Francisco criteria, the “up to seven” criteria or total tumour volume (TTV). Any expansion of the listing criteria is associated with a higher drop-out rate on the LT waitlist and higher post-transplant recurrence rates. TTV <115 cm\(^3\) and AFP <400 ng/mL predict survival after LT, and they have been prospectively validated as selection criteria for LT in Canada (30).

Statements on curative therapies:

- Surgery is first-line therapy for patients with single (and selected multifocal) HCC who have well-preserved liver function (C-P class A) (Level 2A). Mean rating 2.0 (1=8, 2=11, 3=4, 4=2, 5=0).
- Important predictors for the function of the future liver remnant include portal hypertension (platelets <100×10⁹/L, presence of varices, or hepatic venous pressure gradient >10 mmHg) and a normal serum bilirubin (Level 2B). Mean rating 1.2 (1=20, 2=5, 3=0, 4=0, 5=0).
- Anatomic resection should be performed where possible (Level 2B). Mean rating 1.25 (1=19, 2=4, 3=1, 4=0, 5=0).
- Patients should be considered for laparoscopic hepatic resection where adequate technical training and experience exist (Level 5). Mean rating 1.64 (1=13, 2=10, 3=1, 4=0, 5=1).
- The recurrence rates are lower following surgical resection of early stage HCC (within Milan criteria) than with RFA (Level 1B). Mean rating 2.08 (1=9, 2=7, 3=5, 4=3, 5=0).
- Local ablation is recommended for early stage HCC (within Milan criteria) who are not candidates for surgical resection (Level 2A) and can be used to bridge patients to LT (Level 4). Mean rating 1.42 (1=16, 2=7, 3=0, 4=1, 5=0).
- For BCLC stage 0 HCC (<2 cm), ablation may be an effective and less-invasive alternative to surgical resection (Level 2B). Mean rating 1.16 (1=21, 2=4, 3=0, 4=0, 5=0).
- RFA is preferred to PEI for lesions 2 cm to 5 cm in size (Level 1A). Mean rating 1.25 (1=19, 2=4, 3=1, 4=0, 5=0).
- LT should be considered in patients HCC who have developed complications of cirrhosis (Level 5). Mean rating 1.18 (1=19, 2=2, 3=1, 4=0, 5=0).
- LT is the first-line therapy for patients within the Milan criteria who are not candidates for resection or ablation (Level 2A). Mean rating 1.3 (1=19, 2=3, 3=0, 4=0, 5=1).
- LT can be used to salvage patients with recurrence after resection or RFA (Level 4). Mean rating 1.52 (1=14, 2=6, 3=3, 4=0, 5=0).
- Acceptable outcomes (five-year survival >70%) can be achieved in carefully selected patients beyond the Milan criteria (eg, TTV <115 cm\(^3\) AND AFP <400 ng/mL); however, higher waitlist drop-out and recurrence rates following LT may be seen with extended criteria (Level 2B). Mean rating 1.57 (1=12, 2=9, 3=2, 4=0, 5=0).

Current palliative therapies:

There are only two palliative forms of therapy that have been shown to improve survival in randomized clinical trials: transarterial chemoembolization (TACE) and sorafenib.

TACE: Conventional TACE for BCLC stage B HCC is associated with a median survival of approximately two years; unfortunately, the TACE procedure is not standardized (31). TACE has been used to keep patients within selection criteria while awaiting LT, although the exact impact of this on post-LT recurrence requires further study. TACE should be avoided in decompensated cirrhosis and patients with PVT.

A more recent innovation is TACE delivered by drug-eluting beads (DEBs). These have been compared head-to-head with conventional TACE, with no difference in survival, but less toxicity when using the DEBs (32). Cohort studies are now reporting three-year median survival for TACE using doxorubicin-loaded DEBs in carefully selected patients (33). Combination of sorafenib and TACE does not offer a survival advantage.

Sorafenib: Sorafenib for BCLC stage C disease provides a median improvement in survival of approximately three months. This has been demonstrated in two large RCTs (34,35). The survival benefit of sorafenib is only established in patients with preserved liver function (C-P class A cirrhosis). Sorafenib is generally well tolerated but is associated with hand/foot skin reaction, fatigue, gastrointestinal symptoms and hypertension. The standard dose is 400 mg twice daily; however, dose escalation is frequently used in clinical practice. Sorafenib has no advantage when used as adjuvant treatment after any of resection, RFA or TACE.

Statements on palliative therapies:

- TACE is standard of care for patients with large single HCC who are not candidates for resection or ablation (BCLC stage A) or for multifocal HCC without evidence of portal vein invasion or extrahepatic spread (BCLC stage B) (Level 1A). Mean rating 1.27 (1=17, 2=4, 3=1, 4=0, 5=0).
- TACE can be used to bridge patients to LT (Level 4). Mean rating 1.24 (1=16, 2=5, 3=0, 4=0, 5=0).
- TACE should be avoided in patients with main PVT and in patients with decompensated cirrhosis (Level 5). Mean rating 1.05 (1=20, 2=1, 3=0, 4=0, 5=0).
- Compared with conventional TACE, DEBs provide a more standardized technique with a better safety profile (Level 1B). Mean rating 1.36 (1=14, 2=8, 3=0, 4=0, 5=0).
- Patients with disease progression after two TACE should be considered for sorafenib or clinical trials evaluating sorafenib in conjunction with transarterial radioembolization (TARE) or stereotactic body radiotherapy (SBRT) (Level 5). Mean rating 1.76 (1=9, 2=8, 3=4, 4=0, 5=0).
- Sorafenib is first-line therapy for patients with advanced HCC due to portal vein invasion or metastatic disease (BCLC stage C), or in patients who have progressed after TACE (BCLC stage B) (Level 1B). Mean rating 1.55 (1=13, 2=8, 3=4, 4=0, 5=1).
- Sorafenib should only be used in patients with preserved liver function (C-P class A) (Level 1B). Mean rating 1.77 (1=8, 2=11, 3=3, 4=0, 5=0).

Experimental treatments and future directions:

Treatments are considered to be experimental if outcome data are lacking or if there is inadequate comparison with current standard treatments. This is includes TARE and SBRT.

TARE: TARE involves infusing radioactive particles, either glass beads or resin, via the hepatic artery directly into the tumour. This technique has been shown to produce substantial tumour necrosis, is
safe, and can be administered to patients with PVT (36). TARE is well tolerated and has less impact on liver function than TACE. Although it has not been compared directly with TACE in a randomized trial, it does appear to have similar outcomes to TACE (37). In a single non-randomized trial (38), TARE achieved better downstaging than TACE, but long-term post-LT outcomes were not reported. The addition of TARE to sorafenib for advanced-stage HCC is being evaluated in the ongoing phase III Efficacy Evaluation of TheraSphere in Patients With Inoperable Liver Cancer (STOP-HCC) clinical trial (NCT01556490).

SBRT: External beam radiotherapy is a relatively new form of therapy for HCC. Furthermore, stereotactic administration of radiotherapy limits toxicity to the liver and surrounding organs. Phase I and II trials have shown efficacy in achieving disease control; again, there has not been any direct comparison between radiotherapy and any other form of treatment (39). Radiotherapy has also been used to treat malignant portal vein thrombus and to bridge patients to LT. The addition of SBRT to sorafenib for HCC is being evaluated in the ongoing phase III Sorafenib Tosylate With or Without Stereotactic Body Radiation Therapy in Treating Patients With Liver Cancer (RTOG1112) clinical trial (NCT01710937).

Systemic chemotherapy: Systemic chemotherapy has not been shown to significantly enhance survival and, therefore, should not be used outside of clinical trials. Sorafenib with or without doxorubicin is currently being evaluated in the Sorafenib Tosylate With or Without Doxorubicin Hydrochloride in Treating Patients With Locally Advanced or Metastatic Liver Cancer (HEC.1) trial (NCT01015833).

Future directions: Several targeted therapies, including sunitinib (40) and brivanib (41), have failed when compared with sorafenib in RCTs. The addition of erlotinib to sorafenib was not beneficial in advanced stage HCC (42). Brivanib (43) and everolimus (44) have recently failed to show benefit as second-line therapy after sorafenib. Currently, many drugs are under study for HCC; there remains an unmet need for new first- and second-line therapies (45).

Statements on experimental therapies:
- TARE may be considered if patients are poor TACE candidates (eg, PVT) (Level 2B). Mean rating 1.84 (1=7, 2=9, 3=2, 4=1, 5=0).
- TARE may be more likely to downstage T3 tumours compared with TACE (Level 3B). Mean rating 2.47 (1=3, 2=7, 3=3, 4=4, 5=0).
- Further RCTs evaluating TARE are needed to better define its role in HCC (Level 5). Mean rating 1.16 (1=17, 2=1, 3=1, 4=0, 5=0).
- SBRT may have a role in HCC management, including bridging some patients to LT (Level 4). Mean rating 1.78 (1=9, 2=5, 3=3, 4=1, 5=0).
- Further RCTs evaluating SBRT are needed to better define its role in HCC (Level 5). Mean rating 1.22 (1=16, 2=1, 3=0, 4=1, 5=0).
- Systemic chemotherapy (eg, doxorubicin) is not recommended outside of clinical trials (Level 2B). Mean rating 1.33 (1=15, 2=1, 3=1, 4=1, 5=0).
- Further study into second-line agents for patients progressing on sorafenib are needed (Level 5). Mean rating 1.21 (1=17, 2=1, 3=0, 4=1, 5=0).

DISCUSSION

Overall, there was good agreement on the consensus statements presented, with only four statements having a mean rating of ≥2.0 on the five-point Likert scale. The first of these concerned LI-RADS and may reflect an unfamiliarity of clinicians with this new reporting system. LI-RADS is currently undergoing modifications and has not been widely implemented in Canada. However, it has recently been endorsed by the United Network of Organ Sharing and will be a requirement for reporting CT and MRI of HCC patients awaiting LT in the United States.

Second, several participants were not comfortable recommending surgery as the first-line therapy in HCC patients with C-P class A cirrhosis. This may be reflective of the fact that the majority of the audience consisted of hepatologists, who may be more comfortable arranging RFA or LT evaluation for these patients. Similarly, many disagreed with the statement that recurrence rates are lower following surgical resection of early stage HCC compared with RFA. Although this is Level 1B evidence, many in the audience may have recognized the methodological flaws in the three RCTs from China on which this recommendation is based, including significant cross-over between groups after randomization.

Finally, there was significant reservation around a statement that TARE may be more likely to downstage large tumours compared with TACE. Again, there may be a lack of familiarity with TARE because this is only available in a few Canadian centres, or perhaps it is recognition that this recommendation is largely based on a single case-control study from Chicago (Illinois, USA).

CONCLUSIONS

HCC is rapidly increasing in Canada and its incidence is expected to continue to rise for years to come. Surveillance with US alone every six months is currently recommended for high-risk populations. The diagnosis of HCC can usually be achieved with CT or MRI, although CEUS and Gd-EOB-DTPA MRI may assist in the diagnosis in some cases. The management of HCC is complex and must be performed in a multidisciplinary team setting. The BCLC system is recommended for staging and for treatment allocation. In carefully selected patients, resection, RFA and LT can offer a cure, whereas TACE and sorafenib extend life but are palliative therapies. Further research is required on TARE and SBRT before they become standard of care. New, more-effective therapies are needed for advanced-stage HCC.

ACKNOWLEDGEMENTS: The authors thank the speakers (listed in Table 1) for their significant contributions to the meeting, especially Dr Jordi Bruix (CASL Gold Medal recipient) for his critical review and feedback on the consensus statements. We recognize the efforts of Allison Bolliue (CASL secretariat) and BUKSA for meeting organization, and thank Karen Seto and the Canadian Liver Foundation for their assistance in raising funds for this meeting through unrestricted educational grants.

COLLABORATORS: Jordan Feld, Amit Singal, An Tang, Stephanie Wilson, Tae Kyong Kim, Jordi Bruix, Peter Ghali, Sean Cleary, John Kachura, Norman Kneteman, Andrew Zhu, Aldo Montano-Loa and Laura Dawson.

DISCLOSURES: This meeting was sponsored by the Canadian Liver Foundation and its industry partners. Kelly W Burak has received research support (Bayer, Oncozyme) and honoraria (Astellas, Gilead) within the Foundation and its industry partners. Kelly W Burak has received research support (Bayer, Oncozyme) and honoraria (Astellas, Gilead) within the last year from Janssen Canada, Merck, Gilead, Oncozyme, AASLD and WAKO.

REFERENCES

